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COGNITIVE ARCHITECTURE FOR MODELLING
HUMAN ERROR IN COMPLEX DYNAMIC TASKS

by S. GRANT1

RÉSUMÉ

ARCHITECTURES  COGNITIVES  POUR  LA MODÉLISATION  DES  ERREURS  HUMAINES
DANS LE CAS DE TÂCHES COMPLEXES EN SITUATION DYNAMIQUE.

La littérature traitant des interactions homme-machine et des activités dans les systèmes complexes et
dynamiques à haut niveau de technologie, relevant de l’ingénierie cognitive, témoigne d’une substantielle
discussion sur  la  notion d’erreur et  de  modélisation cognitive.   Une raison à cela est  que  de  bons
modèles  cognitifs  pourraient  être  utiles  à  la  conception  de  systèmes  reconnaissant  les  erreurs,  ou
réduisant  leur  probabilité  d’apparition.   Ces  modèles  pourraient  être  utiles  lors  de  la  réalisation
d’interfaces, de la conception de systèmes de sécurité, de l’estimation de risques ou de fiabilité, de cours
sur les facteurs humains ou lors de l’analyse des causes d’accidents.  Une moindre attention a été portée
à l’architecture à la base de tels modèles, même si l’on cherche maintenant à faire que des architectures
telles que ACT-R et SOAR puissent servir de support à la modélisation des tâches complexes.  Chaque
modèle  cognitif  se  base  sur  une  architecture,  qui  peut  être  cognitive.   La  nature  cognitive  de
l’architecture limite la facilité de construction des modèles cognitifs, et, en particulier, de modélisation de
l’erreur humaine.

Une approche pour évaluer l’utilisation probable et la valeur d’une architecture pour modéliser les
erreurs est de comparer les types d’erreurs observées lors de l’exécution de tâches complexes réelles
avec les mécanismes potentiellement fournis par l’architecture pour modéliser les erreurs.  On présente
ici, une première étape de la comparaison entre trois différentes approches: celle de J. R. Anderson dans
ACT-R, de J. Reason dans la Machine Faillible (à la base du modèle COSIMO), et de M. J. Young dans
l’Architecture Cognitive Holon (HCA).  Des architectures telles que ACT-R ne sont pas spécifiquement
conçues comme un cadre de modélisation du type d’erreur considéré dans cet article, mais pourraient
être  étendues  afin  de  créer  une  architecture  convenable.   Des  architectures  telles  que  la  Machine
Faillible de Reason, semblable à l’architecture à la base de COSIMO, ont été conçues pour modéliser
des erreurs mais la Machine Faillible nécessite de meilleures spécifications, allant au-delà de celles
fournies par COSIMO.  Des architectures telles HCA semblent pouvoir supporter des modèles riches bien
que parcimonieux,  cependant  ceci  n’a  pas  été  validé.   Dans  tous les  cas,  on  constate  le  besoin de
modéliser des exemples réels d’erreurs lors de tâches dynamiques et complexes en utilisant les différentes
architectures  et  de  les  tester  en  faisant  des  prédictions,  par  exemple,  sur  les  conséquences  d’une
modification de l’interface, sur le comportement humain et ses erreurs.

Mots-clés: Modèle cognitif; Architecture cognitive; Cognition; Tâches complexes; Erreur.
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COGNITIVE ARCHITECTURE FOR MODELLING ERROR

I. INTRODUCTION: COMPLEX TASKS AND HUMAN ERROR

I.1. COMPLEX DYNAMIC TASKS

This paper is rooted in an established research approach to a particular widespread
kind of complex task.  From the 1960s onwards, researchers such as Jens Rasmussen
(1980,  1983,  1986),  Erik  Hollnagel  (1993),  David  D.  Woods  (1988),  Woods,
Johannesen, Cook and Sarter (1994), James Reason (1990), and many contributors to a
number of collections (e.g., Goodstein, Andersen, & Olsen, 1988, Weir & Alty, 1991,
Hoc,  Cacciabue & Hollnagel,  1995)  have been studying and reflecting on complex,
dynamic, real-time supervision or control tasks involving complex joint human-machine
systems, including automatic subsystems.  These tasks are here referred to as ‘complex
dynamic tasks’.  An appropriate name for the particular subject matter was coined by
Hollnagel and Woods (1983): ‘cognitive systems engineering’.  The field is usually seen
as linked closely with HCI, while having its own distinct character.

Examples of relevant complex systems include industrial and (particularly nuclear)
power plant; modern aircraft and ships; traffic control and management systems; and
high-technology systems found in medical practice.  In each case, the information which
supports  the  operator  or  practitioner  in  his  or  her  task  is  handled  at  least  partly
electronically, by means of computers.  Accidents involving such systems often involve
the loss of human life, as well as extensive and costly damage to the environment or to
the technology itself.  Reason (1990) outlines six famous cases.  This is sufficient to
give great importance to the study of complex tasks and systems, for preventing such
accidents, and for designing more robust, error-tolerant systems, often through attention
to the human-machine interface.

Complexity  of  a  task  or  of  a  system is  difficult  to  define  unambiguously.   For
example,  there  is  no  single  measure  of  complexity  which  will  completely  predict
differences in the ability of people to manage this kind of task.  Woods (1988) lists a
number of factors that contribute to the complexity and difficulty of tasks.  Some factors
are about the world: dynamism, many highly interconnected parts, uncertainty and risk;
while other factors are about the agent (usually the human) and the representation of the
world used by the  agent.   Whatever  criteria  one uses  to  judge the  complexity  of  a
system or task, in practice what one sees is that complex tasks have multiple goals, no
clearly-defined  optimal  behaviour,  and  a  variety  of  strategies  used  by  different
individuals (Grant, 1990).

The  literature  under  consideration  here  is  not  to  be  confused  with  the  distinct
literature discussing theories of expertise.   Holyoak (1991) mentions examples from
chess,  medical  diagnosis,  solving  algebra  word  problems,  mathematical  expertise,
learning from verbal instructions, and analogical thinking, referred to as ‘complex’.

A related distinction is elaborated by Cacciabue and Hollnagel (1995) who use the
term ‘macro-cognition’ to refer to the complete cognitive skills that are relevant to real
complex dynamic tasks, as opposed to ‘micro-cognition’, referring to the cognitive skill
components studied within the laboratory-based paradigm.  Student modelling could be
seen as between the two, but currently seems to share less with complex dynamic tasks,
and is therefore not considered in this paper.
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I.2. HUMAN ERROR

Accidents involving complex dynamic systems have increasingly been attributed to
human error.  Hollnagel (1993) reviews a number of past studies, that show that the
proportion of system accidents attributed to ‘human error’ has increased from as low as
20% in some earlier studies in the 1960s and 70s, to nearer 80% more recently.  Possible
reasons  for  the  increase  include  the  improvement  in  reliability  of  engineered
components, and increased recognition of the possibilities of human error.

Today, civil aviation accidents, for example (one is Monnier  et al.  (1993), others
discussed by Woods et al. (1994)), are frequently seen as involving human error.  How
much the human is really to blame is another question.  For example, in some cases it
may have been that the human-machine interface of the flight deck was less than ideal,
not giving the best information for supporting a correct sequence of actions by the pilot,
or perhaps tying up attention or cognitive resources that could have been used to prevent
the accident.  The human error in this case could be seen as more in the design or
management of the system than in its operation.

This doubt about blame gives one possible reason for hesitating to define human
error exactly.  Nevertheless, Reason offers the following as a definition.

“Error will be taken as a generic term to encompass all those occasions in which a
planned  sequence  of  mental  or  physical  activities  fails  to  achieve  its  intended
outcome, and when these failures cannot be attributed to the intervention of some
chance agency.” (Reason 1990, p.9)

This  leaves  open the  questions  of  what  was planned,  by who,  who intended the
unachieved outcome, and who is attempting to attribute the error to what kind of chance
agency on the basis of what kind of reasoning.

It is easy to be less than fully satisfied by these definitions, and Woods et al. (1994),
in contrast, prefer not to offer a definition, but rather to discuss in great detail different
aspects and factors of ‘human error’, which they put in quotation marks.  The present
paper follows Woods in refraining from attempting a clear, simple definition of human
error.  Instead, the approach to understanding error is through the attempt to model it.

I.3. WHY MODEL ERROR?

The fact of accidents, together with the proportion attributed to human error, give a
strong  incentive  for  the  better  understanding  of  human  error.   Perhaps  a  statistical
approach can suggest ways of trying to avoid situations in which errors have been most
frequently observed, but it needs a deeper model to be able to recognise errors at the
time they occur, to support means of managing them, and to design new systems that
reduce the chances of error occurring.

It would be a mistake to think of human error as a separate phenomenon from the
rest  of  human performance.   This  indivisibility  of  error  from skill  or expertise  is  a
common understanding of the research community. Woods  et al.  (1994) tell  of Jens
Rasmussen often quoting the philosopher Ernst Mach: “Knowledge and error flow from
the same mental source; only success can tell one from the other” (Woods et al., 1994,
p.20).  Rasmussen (1983) says that useful human performance models must reflect the
limits  of  human  capabilities,  so  that  ‘errors’ are  modelled  properly.  He continues:
“Successful performance does not validate a model, only tests of its limits and error
properties can do this” (Rasmussen, 1983, p.264).  So when we talk about models of
error, we are really considering human performance models that are able to account for
errors, rather than models of errors alone.
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There are many possible practical uses for human performance process models able
to explain the processes of error and their generic causes.  Used as conceptual models,
by other humans, they informally support interface design; safety systems design; risk
and  reliability  assessment;  human  factors  training;  and  analysis  of  accident  causes.
Used as user models, implemented as simulations run on computers embedded in the
engineered system, they could be used in particular for operator support; diagnosis of
errors; dynamic task allocation; and the operational management of cognitive resources
more  generally.  Such simulations  could  also  potentially  help with design,  training,
assessment and analysis.

In contrast, models of cognition that neither explain nor predict human error are of
limited usefulness for  practical  complex system design and related matters,  because
safety and reliability are critical to such systems in a way that they are not critical to,
shall we say, the text editors studied by Card, Moran, and Newell (1983).

Having accepted the motives for modelling error, the next section briefly outlines the
current position of cognitive models and architecture in the field of cognitive systems
engineering.  The main part of the paper then gives one approach to the evaluation of
cognitive  architectures  for  modelling  error.  This  is  intended to  serve  a  number  of
purposes.   Firstly,  the  cognitive  architecture  examples  illustrate  the  possibility  and
potential  importance  of  the  evaluation  method  suggested.   Secondly,  exploring  the
method points out various challenges which will need to be addressed if this method is
to be developed.  These challenges are both to the architectures and to the evaluation
method itself.  Thirdly, even the limited analysis done in this paper reveals some issues
concerning the suitability of the architectures for modelling error.

II. COGNITIVE MODELS AND ARCHITECTURES

M. J. Young (1993b) uses the term ‘human performance process’ (HPP) model to
refer  to  engineering-style  models  “which  emulate  human  behavior  by  simulating
specific human information processing attributes and processes” (Young, 1993b, p.3).
This highlights the difference between, on the one hand, the AI tradition, where human
information processing models  can be made just  to test  possibilities for the internal
workings  of  cognition,  and  on  the  other  hand,  the  cognitive  systems  engineering
tradition, where ‘cognitive models’ could be made for the kind of practical purposes
suggested above.  Models intended for practical purposes need to give useful output
which  must  be  able  to  be  tested  in  realistic  scenarios.   Thus,  a  cognitive  systems
engineering model must be a model of some particular skill or ability, and cannot be
simply about abstracted cognitive processes.

There  are  two kinds  of  examples  of  the  use  of  cognitive  modelling  in  complex
dynamic tasks.  The first kind involves the general discussion of the characteristics of
human cognition in these tasks, which may serve as objectives or requirements for more
specific cognitive simulations, or may inform conceptual models used in design and
related areas.  Much of Rasmussen’s and Hollnagel’s work falls into this category.  Such
general  work,  while  being  of  great  potential  importance,  is  difficult  to  test.   One
significant  use  in  this  way is  in  the  analysis  of  incidents.   Cacciabue,  Pedrali,  and
Hollnagel (1993) refer to a very simple model of cognition (Hollnagel, 1993; Hollnagel
& Cacciabue, 1991) comprising four stages of perception / observation, interpretation,
planning / choice, and action / execution, along with a memory, illustrated by use in the
analysis of an aircraft accident.
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The second way is that of cognitive simulation modelling of specific tasks, reviewed
by Cacciabue (1994).  These simulations allow at least some kind of comparison with
the  performance  of  a  human  on  a  similar  task,  and  this  potentially  allows  the
simulations to benefit from the feedback and develop greater accuracy and coverage.
Amalberti and Deblon (1992) made a simulation of military aircraft pilot behaviour,
while the COSIMO model (Cacciabue et al., 1992) has been used for modelling tasks
and operator behaviour in nuclear power and civil aviation.

Any  cognitive  simulation  or  model  could  be  regarded  as  having  architecture,
possibly at  several  levels.   The top level  architecture  of  a  cognitive  model  is  what
remains  when all  the  domain-specific  knowledge is  taken out,  rather  like  an expert
system shell.  Thus a cognitive model built directly as a production system model would
have the production system as its architecture.  Lower-level architecture may involve
the  underlying  computer  architecture  on  which  the  top-level  architecture  is  built.
Referring to architecture as ‘cognitive’ makes sense if it specifies some general, rather
than  domain-specific,  features  or  mechanisms  which  model  some  aspect  of  human
cognitive processes.

For  example,  Amalberti  and  Deblon’s  (1992)  simulation  model  has  a  cognitive
architecture constructed specifically for the purpose.  This is built on top of an ‘actor’ or
agent-based,  object-oriented  computational  architecture.   The  cognitive  architecture
underlying  COSIMO  includes  part  of  Reason’s  (1990)  fallible  machine,  which  is
discussed  in  detail  below.  It  was  implemented  using  a  blackboard  computational
architecture.  The architecture of cognitive models which are not simulations can be
quite simple.  For example, the simple model of cognition used by Cacciabue, Pedrali,
and Hollnagel (1993) is basically an ordering of the four presumed stages of cognition.

There  are  clear  advantages  in  principle  to  using  existing  cognitive  architectures.
Since they define the mechanisms which use the knowledge, and the structure of that
knowledge, building a cognitive simulation becomes a matter of fitting the knowledge
gained by task analysis or knowledge engineering into the predefined formats given by
the architecture, and then letting the architecture do the relating together, running the
model,  and  producing  the  simulation  output  to  compare  with  human  performance.
Without  a  cognitive  architecture,  the  available  effort  must  be  divided  between
implementing general cognitive mechanisms, and modelling using those mechanisms.

What of the recognised cognitive architectures such as Newell’s (1990) Soar and
Anderson’s (1993) ACT-R (which is discussed in more detail  shortly)?  In the past,
these architectures have tended to be used in the modelling of the ‘micro-cognition’
cognitive skill component tasks, rather than any full-scale complex dynamic skill.  At
the  time  of  writing,  Soar  and  ACT-R  (e.g.,  Lee,  Anderson,  &  Matessa,  1995)  are
intended  to  be  used  to  model  the  Kanfer-Ackerman  (1989)  air  traffic  control  task,
which,  though still  a simulation game,  is  dynamic,  and is  a step towards a  realistic
complex dynamic task.

This brings up some serious and interesting questions.  Several years ago, Rasmussen
(1983) expressed doubts about whether production system models would be able to
represent  the  error  properties  observed in  humans  in  complex dynamic  tasks.   Can
ACT-R, for example, provide adequate architecture for complex dynamic simulations
that include error?  Or will the architecture have to be extended to include complex
error  phenomena?   On the  other  hand,  are  the  architectures  from existing  complex
dynamic task simulations useful for simulating other tasks?  To approach answers to
these  questions  we  need  to  consider  how  to  evaluate  cognitive  architectures  for  a
particular purpose.
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III. COGNITIVE ARCHITECTURES FOR MODELLING ERROR

When we consider the capabilities of an architecture for modelling human error, we
are not talking about formal power, since formally most architectures have the same
power.  We are talking about how well matched the architectural mechanisms are to the
modelling of error, comparing errors observed in real complex tasks with the potential
mechanisms available in the architecture with which to model error-prone behaviour.
This  can  be  done  by  examining  either  particular  examples  of  error,  or  some  error
categories,  and examining how straightforward or complex the model of such errors
would have to be in terms of the architecture.  The other way round, one can look at the
architecture, and see what observable errors are likely to result from the operation of
any  component  or  aspect  of  the  architectural  mechanisms  or  knowledge  structures.
These could then be compared with the errors observed in operation with humans.

Ideally, an architecture intended for modelling particular kinds of error would be
tested  by  being  used  in  the  modelling  of  just  those  kinds  of  error.   Choosing  a
representative selection of errors for this would itself be a major task.  An easier option,
satisfactory for an initial exploration, is to take classes of error already described by
other authors.  This is less than ideal, because any predefined classes of error are likely
to have already imposed some kind of theoretical structure on the data.  Reason’s (1990)
analysis assumes, as fundamental, differences between what he calls ‘failure modes’ in
skill-based,  rule-based  and  knowledge-based  performance,  following  Rasmussen’s
(1983) distinction, which may or may not fit in with the causal error categories arising
from explanation in terms of a cognitive architecture.   Nevertheless, any reasonably
broad classification of errors at least gives a range of errors which may be explained in
terms of a cognitive architecture.  For this reason, and since Reason is a very well-
known author in the field of human error, his GEMS (generic error-modelling system)
classification is here taken to stand for the different kinds of observable errors, with
which are compared the errors that can be generated by the cognitive model.

This is not the place for explaining Reason’s terminology, but to get a general idea of
his GEMS classification, Table 1 reproduces the content of Reason’s Table 3.3 (1990,
p.69).  Although it is not a theory-free classification, it will be used here as a rough
indication of errors observed in practice, including those arising in complex dynamic
tasks.

The comparison of these observed errors against errors theoretically predicted by a
cognitive  architecture  can  be  done  at  varying  levels  and  degrees  of  precision.   A
complete  comparison  of  any  one  cognitive  architecture  would  be  a  major  study,
requiring thorough, and practical, knowledge of the architecture.  Here, a preliminary
analysis is undertaken, in which some of Reason’s error types are used selectively to
illustrate particular points of interest in the architectures.  

The different approaches compared in this way are: Anderson’s ACT-R; Reason’s
fallible  machine  (underlying  the  COSIMO model);  and  Michael.  J.  Young’s Holon
Cognitive  Architecture.   ACT-R  is  chosen  as  arguably  the  most  cognitive  of  the
architectures originating from the AI tradition. The fallible machine is chosen because it
is  perhaps  the  only  architecture  designed  expressly  to  model  error.   The  Holon
Cognitive Architecture is less well-known and developed, but is chosen because it is one
of the few examples offering an approach different from the first two.  
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TABLE 1

Summarising the main headings for the failure modes at each of the three performance levels 
(Reason, 1990 p.69)

Résumé des principales catégories de modes de défaillance à chacun des trois nivaux d’activité 
(Reason, 1990 p.69)

Skill-based performance
Inattention Overattention
Double-capture slips Omissions
Omissions following interruptions Repetitions
Reduced intentionality Reversals
Perceptual confusions
Interference errors

Rule-based performance
Misapplication of good rules Application of bad rules
First exceptions Encoding deficiencies
Countersigns and nonsigns Action deficiencies
Information overload Wrong rules
Rule strength Inelegant rules
General rules Inadvisable rules
Redundancy
Rigidity

Knowledge-based performance
Selectivity
Workspace limitations
Out of sight out of mind
Confirmation bias
Overconfidence
Biased reviewing
Illusory correlation
Halo effects
Problems with causality
Problems with complexity

Problems with delayed feed-back
Insufficient consideration of processes in time
Difficulties with exponential developments
Thinking in causal series not causal nets
Thematic vagabonding
Encysting

III.1. ANDERSON’S ACT-R

ACT-R  (Anderson,  1993),  like  Soar  (Newell,  1990),  is  a  production  system
architecture  in  which  various  cognitive  skills  can  be  modelled.   At  its  simplest,  a
production system comprises a set  of if-then or condition-action rules,  along with a
working  memory.   In  execution,  the  system  checks  for  matches  between  data  (in
working memory) and conditions, and when a match is found, executes the action part
of the rule whose condition has been matched.  The action parts of rules typically alter
the contents of working memory.  It is possible to write simple models of cognitive
skills as production systems in which the rules at least in part correspond to rules which
humans might plausibly be explicitly aware of when they attempt to perform the skills.
Arithmetic is a favourite example,  and Anderson gives possible production rules for
addition (on paper) on page 5 of the book.
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But ACT-R, like its predecessors, adds a great deal more structure and mechanism to
the  basic  production  system  architecture.   It  deserves  to  be  called  a  cognitive
architecture particularly because of the attention which has been given to the plausibility
of the mechanisms and of the model behaviour, in the light of knowledge from cognitive
psychology.

III.1.A. Architecture and error in ACT-R

The  most  straightforward  kind  of  error  that  can  be  modelled  with  a  production
system architecture is on involving wrong production rules.  This could correspond to
Reason’s broad category ‘application of bad rules’.  So there is one simple possibility
for explaining an observed error type in terms of an architectural structure.  Whether it
is a good explanation depends on the more detailed matching of possible models with
observed phenomena.   Anderson (1993,  p.32-35)  gives  persuasive evidence that  the
production-rule unit is good for analysing performance in learning LISP.  

The existence of an erroneous rule begs the question of how it came to be there, and
how it is maintained.  For Anderson, researching the learning of arithmetic for example,
it may be reasonable to accept that these bad rules arise from some unspecified process.
In contrast, in a real complex dynamic task the operators or practitioners tend to have
learned the rules very well over a long period of time, and the retention of the bad rules
as well as their source would have to be explained.

Can other observed errors be modelled as faulty production rules?  This is a key
question for illustrating the nature of this exercise in comparison of observed errors with
mechanisms.   Production  system  models  may  have  productions  that,  rather  than
encoding domain knowledge content, instead represent some more subtle and general
feature of the cognitive processes.  Such productions may represent very different kinds
of knowledge to the productions that straightforwardly code the domain rules (e.g., of
addition).  The mechanisms may differ for acquiring, maintaining and checking these
different  kinds  of  production.   If  this  is  the case,  a  useful  analysis  of  the different
observed errors would have to go beyond the idea that they were both faulty production
rules, to include the architectural differences in the mechanisms affecting the errors in
question.  If one architectural mechanism is to explain more than one manifest type of
error,  there  needs  to  be  a  explanation  why  this  is  so,  and  how one  mechanism of
producing error is manifest in two or more ways.  The more clearly different types of
error are shown as arising in distinct ways, the more useful the analysis will be.

In the case of ACT-R, there are indeed many more mechanisms, and more structure.
Three  essential  theoretical  commitments  form  the  basis  of  the  ACT-R  architecture
(Anderson, 1993, p.17).

1. There  are  two  long-term  repositories  of  knowledge:  procedural  memory  and
declarative memory.  This  differs from Soar, where there is  only one production
memory.

2. The ‘chunk’ is the basic unit of knowledge in declarative memory.  Chunks can be
organised hierarchically, such that one chunk can appear as part of another chunk.

3. The production is the basic unit of knowledge in procedural memory.  Productions
are essentially independent of each other, and learned separately.

This allows a possible distinction between wrong productions, already mentioned,
and wrong units of declarative memory.  Wrong declarative knowledge about the world
is an easy problem to imagine.  In Reason’s scheme this seems to correspond to some
knowledge-based  errors,  but  it  is  not  clear  exactly  which  ones  could  be  explained
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simply by wrong declarative knowledge.  In practice, a human performing a complex,
dynamic task would  be unlikely to  possess  long-term declarative  knowledge that  is
usually wrong.  For working memory, on the other hand, erroneous knowledge will
presumably arise from unreliable procedures, which again leads back to questions about
the architecture of those procedures.

An  example  of  erroneous  belief,  in  aircraft,  involves  the  surprisingly  common
accident  type  of  controlled  flight  into  terrain,  where  the  aircraft  does  not  have  a
technical fault, but for whatever reason the pilots allow it to fly into the ground.  In
these cases there are undoubtedly false assumptions about the situation being a certain
way when in fact it is not that way at all.  The pilots may assume they are on the correct
glide-path when in fact they are not.  The next question is, how did that error arise?
Answers could be attempted  ad hoc, by listing the immediate precursors of the error;
but that will not help in the quest for solutions to that particular type of accident.  What
would be most valuable would be an architectural analysis of the error type, leading to
prediction  of  design  strategies  for  combating  the  problem.   It  is  an  open  question
whether or not ACT-R affords the required architectural analysis in this case.

Much detail of the operation of ACT-R is focused on what is a central issue for all
production systems: how to select a particular production rule from a range of ones
whose conditions match to a similar extent.  In ACT-R, this ‘conflict resolution’, as it is
generally known, is determined by a list of factors: the goal that is currently active; the
past history of use of various declarative chunks; the elements in the current context; the
complexity of the rule; the past frequency of use of the production rule; the past history
of success of the production rule, the amount of effort put into solving the problem so
far;  the  similarity  between  the  goal  state  and  the  state  resulting  from applying  the
production rule; and what other options for behaviour are available.

This  mechanism is  clearly  of  the  right  nature  to  produce  errors  where  normally
suitable rules are applied inappropriately.  But it is difficult to know which part of the
conflict  resolution mechanism to put in correspondence with which error or type of
error.  In order to be able to identify certain mechanisms with certain types of error, one
would  have  to  perform  simulations,  systematically  varying  the  different  aspects
determining  production  rule  selection,  and  see  whether  any  patterns  emerge  which
correspond with observable error phenomena.

At places in ACT-R, what is called ‘rational analysis’ is invoked.  This means that
there  are  assumed  to  be  mechanisms  that  work  optimally  in  some  sense,  without
specifying how each mechanism works.  This may be justified, in that there may be
levels  of  cognitive  mechanism that  work  well,  but  are  very difficult  to  model  in  a
particular framework.  However, to the extent that rational analysis is used, it eliminates
the possibility of attributing any errors to that part  of the architectural mechanisms,
unless being rational contributes to an error.

While ACT-R can be used for modelling existing skill without any learning, skill
acquisition  is  a  significant  focus  for  the  theory,  and  this  has  implications  for  the
relationship of the architecture with models of error.  The theory is stated as follows.

1. The  knowledge  underlying  a  skill  begins  in  an  initial  declarative  form  (an
elaborated example), which must be interpreted (problem solving by analogy) to
produce performance.

2. As a function of its interpretative execution, this skill becomes compiled into a
production-rule form.

3. With practice, individual production rules acquire strength and become more
attuned to the circumstances in which they apply.

9



COGNITIVE ARCHITECTURE FOR MODELLING ERROR

4. Learning  complex  skills  can  be  decomposed  into  the  learning  functions
associated with individual production rules. (Anderson, 1993, p.143)

Including a learning mechanism provides a deeper level  of potential  explanation.
Instead  of  being  limited  to  accounting  for  errors  in  terms  of  the  present  state  of
knowledge and the way that interacts with the environment, a learning model enables
the cause of error to be traced back to an explanation of how the knowledge involved in
the error came to be there.  A model including learning is stronger, predicting more, and
equally is more open to refutation.

Interestingly, Anderson (1993) sees this theory of skill acquisition as central to his
book.  Recognising this helps to explain the strengths of the ACT-R architecture.  Since
one of the key questions guiding the development of ACT-R has been ‘how is cognitive
skill  acquired’,  it  makes  sense  that  the  phenomena  best  modelled  are  the  studied
examples  of  skill  acquisition.   It  is  to  be  expected  that  ACT-R is  well-adapted  to
modelling in those domains.

This contrasts with cognitive systems engineering, where modelling learning is not a
prime concern.  One may speculate what difference it would make if an architecture
were developed being less concerned with learning and more under the influence of the
question, ‘how do errors in complex dynamic tasks happen?’  This suggests reversing
the  analysis,  and  looking  at  some  of  Reason’s error  types  in  terms  of  the  ACT-R
architecture.

III.1.B. Error types and ACT-R architecture

Which of Reason’s error types pose difficulties for ACT-R?  A few examples are now
quickly outlined.  Attention and perception do not feature explicitly in ACT-R, as the
kinds of tasks modelled are not ones where attention and perception are critical.  As a
consequence, errors due to attention problems, given in Reason’s GEMS under ‘skill-
based  performance’  are  not  explicitly  modelled  in  ACT-R.   From  the  rule-based
category,  ‘informational  overload’,  seems  not  to  be  explicitly  modelled.   At  the
knowledge-based level it appears that there are many relevant human failure modes that
have no directly corresponding mechanism in ACT-R.  Since, for example, there is no
explicit limitation on working memory usage in the architecture, error types such as
workspace  limitations,  confirmation  bias,  overconfidence,  and  problems  with
complexity would have to be modelled in terms of other aspects of the architecture, if at
all.

These points are made briefly, because without the kind of knowledge that comes
from deep involvement in the architecture, it is difficult to be sure what architectural
mechanisms  could  perhaps  be  invoked  to  explain  some  of  these  error  types.   The
explanation of phenomena that have not yet been explicitly accounted for is a creative
exercise, and must be left open to those actively working with the architecture.

Table 2 summarises the major points of the discussion.  It is not intended to discredit
ACT-R as a potential architecture for modelling errors in complex dynamic tasks, but
rather to draw attention to some of the areas where close correspondence remains to be
achieved, or perhaps where ACT-R could be developed or supplemented to provide a
architecture more closely adapted to error modelling.
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TABLE 2

Some mechanisms in ACT-R compared with some error categories

Comparaison entre quelques mécanismes de ACT-R et des types d’erreurs

ACT-R mechanism or structure Error category

Procedural production rules: missing or 
‘buggy’

Errors of omission, inability to complete 
task

Declarative chunks (erroneous) Widespread errors

Conflict resolution Sub-optimal rule selection

Skill acquisition mechanisms: analogy, 
production creation, production tuning

Correspondence unclear

Could be modelled by partial matching Some errors of commission

Unclear Several of Reason’s skill-based errors

Unclear Some of his knowledge-based errors

III.2. REASON’S FALLIBLE MACHINE AND COSIMO

Reason’s Fallible  Machine  contrasts  with  GEMS,  discussed  above.   GEMS is  a
classification of error types, based on a broad conceptual model of the logical stages of
erroneous processes. Only a minimal internal cognitive structure and mechanism are
used.  In  contrast, his Fallible Machine design, appearing in the same book (Reason,
1990) is in effect a cognitive architecture.

Reason’s  intention  in  designing  his  Fallible  Machine  is  very  appropriate  to  the
present study.  His question is “What kind of information handling device could operate
correctly  for  most  of  the  time,  but  also  produce  the  occasional  wrong  responses
characteristic of human behaviour?” (Reason, 1990, p.125). In his book, he outlines a
conceptual design for this Fallible Machine, for which the structural components are
reproduced in Figure 1, reproduced from his Figure 5.1.

Peripheral working memory

Mémoire de travail périphérique

Focal working memory

Mémoire de travail focaleSensory inputs

Entrées sensorielles

Knowledge base

Base des connaissances

Outputs to effectors

Sorties vers les effecteurs

Buffer store

Mémoire tampon

Fig 1: The principal structural components of the fallible machine. 
Les composantes structurales essentielles de la machine faillible.Reason (1990) Figure 5.1, p.126
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Peripheral  working  memory  (PWM)  receives  inputs  from  senses  and  from  the
knowledge base, and selection takes place to determine what is to be processed by the
powerful and restricted operation of focal working memory (FWM).  The knowledge
base contains procedural and declarative knowledge units, which are neither clearly the
same  as,  nor  clearly  different  from,  those  of  ACT-R.   Each  knowledge  unit  has  a
modifiable level of activation.  When this level exceeds a threshold, the knowledge unit
outputs some product either to the effectors, or to PWM.

There are three mechanisms for bringing a stored knowledge unit into FWM.  There
is a kind of search mechanism modelling direct human inference, and then there are two
mechanisms which are central to the error-prone nature of the architecture.  These are
similarity matching and frequency gambling.  These come from Reason’s observation
that “When cognitive operations are underspecified, they tend to default to contextually
appropriate, high-frequency responses.” (Reason, 1990, p.97).

Similarity  matching  is  similar  to  the  basic  production  rule  condition  matching
process in production systems.  Partial matching is explicitly allowed, as in the example
given by Reason: when a general knowledge question is put to someone, the cues in the
question  activate  related  portions  of  long-term memory.  If  an  exact  answer  is  not
known, the answer guessed is likely to come from the set of items activated by the cues
— that is, those partially matched.  This gives the potential to model errors similar to
those noted in the discussion of ACT-R.

In  the  Fallible  Machine,  frequency  gambling  may  follow  similarity  matching.
Frequency gambling is the selection between partially matched knowledge units on the
basis of frequency of encounter.  Compared with ACT-R’s manifold factors influencing
conflict resolution, this is relatively simple.  It may be more clear, but if Anderson has
good reason to include all the different factors, maybe the Fallible Machine loses in
fidelity compared with ACT-R.  Without a more precise specification of the Fallible
Machine architecture, it is difficult to do more than guess differences in the modelling
of rule-based errors between the two architectures.

Skill-based attentional errors could in principle be modelled in terms of the selection
of PWM contents for transfer to FWM.  In this case, the lack of detailed specification
given in the exposition makes it difficult to judge whether the architecture can give a
psychologically plausible and computationally implementable explanation of these skill-
based error types.  In that way, the Fallible Machine is in much the same position as
ACT-R.

Similar problems occur in considering knowledge-based error types.  It is relatively
easy to  propose  on paper  mechanisms which  plausibly could serve as  the  basis  for
modelling  these  error  types,  but  much  more  difficult  to  specify  in  detail  the
computational mechanisms responsible.  As Reason says, “Inevitably, this design for a
fallible machine dodges many crucial issues and skates over others. ... What it tries to
do, however, is to convey a picture of an information-handling ‘machine’ that ... is in
essence driven by a small number of simple computational principles.” (Reason, 1990,
p.137).

Computational implementation of Reason’s theory has been done in two ways.  One
implementation  is  by  Marsden  (1993),  whose  work  is  briefly  described  by  Reason
(1990).   The  main  application  of  this  which  is  described  by  Reason  is  in  general
knowledge question answering.  The implemented model gives error results that match
well  with  experimental  ones  on  this  task.   But  the  potential  of  Marsden’s
implementation in simulating complex dynamic task errors remains currently untested.
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The other implementation based on Reason’s work is the COSIMO (for Cognitive
Simulation Model) system (Cacciabue  et al., 1992), which implemented much of his
architecture including similarity matching and frequency gambling mechanisms, within
the  pragmatic  framework  of  a  general  blackboard  computational  architecture.   The
knowledge base contains rule-based frames and knowledge-based frames.  A rule-based
frame relates  a  particular  type  of  accident  with  a  frequency  of  encounter,  a  set  of
attributes (or symptoms) typical of the accident, and a set of appropriate actions.  Each
symptom  has  a  physical  salience,  according  to  how  easily  the  indication  of  it  is
perceived, and cognitive salience, according to its significance.  The knowledge-based
frames,  in  contrast,  contain  rules  of  thumb,  together  with  general  principles  from
engineering and (in the nuclear power plant case) physics.

COSIMO  has  a  number  of  cognitive  functions  which  manage  the  knowledge
effectively  while  also being the  mechanisms through which  error  is  manifest.   The
filtering function selects data from the environment based on physical and cognitive
salience; this is governed by a filter threshold, and the relative weight of physical and
cognitive salience can be adjusted.  There is then an interpretation threshold governing
conversion  to  meaningful  form.   The  diagnosis  function  is  achieved  by  similarity
matching and frequency gambling, producing a support score for each hypothesis.  A
hypothesis evaluation function then filters these hypotheses according to an evaluation
threshold that can be dynamically modified to reflect the current cognitive state of the
operator.  The execution function then puts the rule-based frame associated with the
selected hypothesis into working memory, and the actions associated with the frame are
executed.  Finer details of the implementation are given in the cited paper, but will not
be discussed here.

For the purposes of the present paper, the real strength of the COSIMO analysis lies
in  the  treatment  of  simulated  errors.   Three  kinds  of  error  are  discussed,  which
Cacciabue  et al. (1992) call ‘cognitive collapse’, ‘unadapted change’, and ‘cognitive
lock-up’. These error types are abstracted from observations of operators performing
real tasks.

Their category of cognitive collapse is when the operator loses the capacity to reason
clearly, perhaps  due  to  acute  stress.   COSIMO models  this  by  expanding  the  filter
threshold, decreasing cognitive salience and increasing physical salience, increasing the
interpretation threshold, increasing the importance of frequency gambling compared to
similarity matching, and increasing the evaluation threshold.  This seems to correspond
fairly with Reason’s ‘informational overload’.

What is called ‘unadapted change’ is where the operator responds to a new event
without  taking  past  effects  into  account  fully.   This  is  simulated  by  reducing  the
evaluation threshold, and again frequency gambling is increased in weight relative to
similarity  matching.   This  could  be  compared  to  Reason’s  category  of  ‘thematic
vagabonding’, though Reason gives it as a knowledge-based failure mode, rather than
the rule-based problem which is suggested by COSIMO.

Cognitive lock-up is where the operator continues to act in terms of a hypothesis that
should have been replaced.  The disconfirming evidence is not effective.  In this case,
again the strength of frequency gambling is raised, but this time the evaluation threshold
is also raised.  This can be compared with Reason’s ‘confirmation bias’ and has some
points in common with ‘encysting’.

COSIMO’s explanation of errors shows well how the cognitive architecture can be
used to explain these errors using mechanisms that are also responsible for effective
performance.  There is no attempt, however, to model a complete range of errors, nor to
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map all COSIMO’s potentially error-prone mechanisms onto observed error types.  The
authors also recognise limitations: they state that COSIMO does not model limitations
in inferential, temporal and analogical reasoning.

The  comparison with  Reason’s failure  modes  in  these  three  cases  highlights  the
difficulty of using predefined categories of error in doing this comparison.  One area for
development would be to assemble a set of real human errors (whether taken from a real
complex dynamic system or a simulation) described in detail without any theoretical
preconceptions.

The  above  discussion  shows  that  COSIMO  can  model  some  errors  in  terms  of
alterations  of  the  parameters  built  into  its  cognitive  architecture.   There  is  much
potential for development of COSIMO, or a similar architecture.  One improvement
could be a clearer distinction between the theory and the implementation detail, such as
is recommended by Cooper, Farringdon, Fox, and Shallice (1995).  A principled account
could be given of what would cause the model parameters to vary to produce errors.
Hollnagel (1993) approaches a similar  issue with his  discussion of ‘control  modes’.
This  has  not  been  implemented,  though  some  work  towards  this  end  has  been
undertaken.

III.3. YOUNG’S HOLON COGNITIVE ARCHITECTURE

ACT-R and the Fallible Machine have several things in common, and thus it is worth
also exploring cognitive architectures for modelling error that have a different basis.  An
example of this is M. J. Young’s (1993a, 1995) work, which springs from a similar
motivation to  that  of  the cognitive systems engineering community.  The aim is  to
support  operability  analysis  of  designs  for  complex  dynamic  systems,  investigating
optimum crew arrangements and task allocation between humans and machines.  As it
was still under development, the brief discussion here is intended simply to outline the
concepts, and to suggest possibilities for future investigation.

Young’s Holon Cognitive Architecture (HCA) is not based on production rules.  The
concept of a holon is taken from Koestler.  It is an autonomous unit comprising rules,
execution  strategies,  and its  own internal  representation of  the  relevant  parts  of  the
environment.   Holons  communicate  by  message  passing,  and  are  arranged  in
hierarchies,  called  holarchies.   One  motivating  concept  is  to  devise  an  architecture
which is  not dependent on a  sophisticated central  executive mechanism, but instead
where control is distributed, consistent with the possibility of parallel  execution and
increased plausibility in terms of human neural architecture.

One of the more interesting ideas in the HCA is that knowledge is distributed through
the holons, rather than being in the form of complete units of declarative knowledge.
Young calls  the  memory  construct  a  ‘thread’.   A thread  is  a  pattern  of  connection
between different holons.  Young (1995) gives the example of a simple ‘dog’ thread.
The attributes that together define a dog are located in separate holons: for colour; form;
habitat; sound made; autobiographical information; and so on.  Recognition of a dog
would involve activation of a number of these holons, as an input holarchy, while an
operator performing some action would involve the activation of an output holarchy.

Young (1995) briefly explains how Reason’s three basic error types can be modelled
in terms of the HCA.  Skill-based slips occur when spreading association triggers a
routine that is inappropriate, but when the evaluation of whether the action has been
carried out correctly is not triggered.

Rules are implemented with their conditions as threads.  Rule-based mistakes can
occur when a thread is activated which is similar to the actual condition, but has a lower
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activation threshold.  Alternatively, a correct condition thread triggers a sensorimotor
routine with a lower threshold than the appropriate one.

Knowledge-based  mistakes  occur  when  the  operator  formulates  an  inappropriate
plan.   This  can  either  be  due  to  perceptual  bias,  and  the  processing  of  the  wrong
perceptual cues, or due to cognitive bias invoking a well-learned plan instead of a more
novel approach.

Without examples of implementation, as have been given in the cases of ACT-R and
COSIMO, it is difficult  to assess the real strengths of the HCA in the modelling of
errors.   Young  recognises  that  the  architecture  is  underspecified,  and  collaborators
meanwhile have produced a modelling framework intended to allow the construction of
HCA-like  cognitive  models  (Deutsch,  Cramer,  &  Feehrer,  1995).   If  substantial
cognitive models are  implemented in  terms of  the HCA, it  will  become clearer  the
extent to which it really offers significant differences in either capability or simplicity.  

IV. DISCUSSION OF THESE DIFFERENT ARCHITECTURES

The review above has been made from the position of considering what  kind of
cognitive architecture to use to model tasks including errors.  The goal of answering
precisely which architecture is currently suitable for which models is out of reach, but
for those interested in the aim of using existing cognitive architecture for modelling,
some points  are  made here  concerning  features  of  cognitive  architectures  that  pose
problems or opportunities.

It  is  clear  that  architectures  that  have  not  been  implemented  tend  to  be  too
underspecified even to be sure of what kinds of error they would be suitable to model.
They are not much help to the cognitive engineer interested in using simulation models
of error, as the engineer would have to do much work filling in the specification of the
architecture, without even being sure that it would be effective when the work had been
done.  Implementation and testing are therefore important,  both practically, and also
because  implementation  reveals  problems  which  can  lead  to  improvement  of  the
architecture.

The analysis of COSIMO showed that even when an architecture is implemented
explicitly to include errors in cognitive models, it can still be a major effort to relate
particular categories of error to the architectural mechanisms.  This is especially the
case in architectures which have much internal complexity, and so a good objective is to
devise architecture that covers the same or a greater range of error phenomena in a more
parsimonious framework, with, particularly, a clearer distinction between the cognitive
architecture and the computational implementation.  However, simple architectures are
of  no practical  use  if  they  do not  clearly  allow modelling  of  the  types  of  error  of
practical importance: they must have no less that the necessary complexity (similarly to
requisite variety, as in Conant and Ashby (1970), and others).

Error is not just one thing, and the kind of error that needs to be modelled creates
different demands on the architecture.  ACT-R, for example, does not set out to support
models of errors in complex dynamic tasks, and it may be expected that substantial
work will have to be done to adapt ACT-R for supporting such error models.  Cognitive
models cover different phenomena, depending on their intended use, and it is no more
than  common  sense  that  an  architecture  needs  to  be  designed  with  the  use  of  the
supported models in mind.  If a cognitive model is to include learning, in particular, the
underlying architecture must, like ACT-R, include learning mechanisms.  It currently
seems  unlikely  that  predictive  simulations  of  learning  will  be  practically  used  for
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complex dynamic tasks in the near future, though such an architecture would be very
impressive  and  potentially  highly  useful,  since  it  would  enable  models  of  operator
training and learning from experience, and could thus be used in initial and in-service
training design.

Evaluation of the likely potential of an architecture, as approached here, is not the
same as testing it in practice.  Since an architecture is not directly testable, testing must
involve creating models on the basis of the architecture, and comparing the performance
of the model with the performance of humans on similar tasks.  The most stringent
testing  involves  using  such  a  model  to  make  predictions  about  the  effects  of,  for
example, changing the interface to a complex task, and using this capability to design or
redesign a complex dynamic system in a way that fewer errors occur.  This is a major
future  goal  for  the  practical  use  of  cognitive  architecture  in  cognitive  systems
engineering.

V. DEVELOPING ARCHITECTURE FOR MODELLING ERROR

There are two main development directions apparent from a wide consideration of
cognitive architecture.  One, as mentioned in the previous section, is to increase the
amount of specification detail of the architecture, implement it, and make it usable to
create cognitive models in whatever domain it is intended for: this could well be seen as
including the  provision  of  a  modelling  framework,  offering  the  functionality  of  the
architecture to cognitive modellers.  From the examples discussed in the present paper,
deeper specification may be appropriate for architectures like the Fallible Machine or
the HCA.  For the COSIMO implementation, the experience gained could be fed back
and  used  to  help  create  a  better  more  generally  usable  one.   There  are  also  other
unimplemented cognitive architectures that may be worth implementing.  For complex
dynamic tasks,  a  good example is  the  kind of  architecture  assumed in the work of
Bainbridge  (1974),  and  in  particular  her  cognitive  processing  element  concept
(Bainbridge, 1993).

The other development direction is to extend the architecture to cover an increasing
range of phenomena observed in human behaviour and error.  This could be applied, in
various ways, to all the architectures discussed.  This does not only mean extending an
architecture’s capability: it may mean restricting its capabilities so that its limits match
better the limits of human cognition.  Working memory and attention limits are obvious
targets.  Other architectures to consider for development in this direction also include
the Knowledge Blocks approach of Boy (1991) developed by Mathé (1990).

At this  point  it  is  helpful  to  summarise the options,  in  terms of architecture,  for
creating  cognitive  models  in  whatever  field  is  of  interest  — here  this  is  complex
dynamic  tasks.   There  appear  to  be  three  options  for  the  development  of  cognitive
models from architectures.

Firstly,  one  could  use  a  relatively  simple  architecture,  elaborating  purpose-built
structures and mechanisms for the particular cognitive model required.  So, for example,
one could build a model of expert  decision-making as an expert  system or a multi-
criteria  decision support  system.   Models  of  routinised skills  could be built  from a
procedural  programming basis,  or using GOMS (Card  et  al.,  1983).   However, two
problems seem likely in these cases: difficulty in modelling more complex phenomena
such  as  correct  performance  and  error  in  complex  dynamic  worlds;  and  lack  of
generality, and transfer to other tasks, of any phenomena modelled ad hoc.
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Secondly,  one  may  work  to  develop  an  existing  cognitive  architecture  as  the
modelling need is seen to arise.  A problem here is that the need is subjective.  There is
always the alternative of using existing mechanisms given by the architecture.   The
motivation for extension of an existing architecture will be that the architecture is not
easy enough to use in some way for the modelling task in hand.  This is perhaps the best
feasible  option  at  present,  and  will  presumably  be  the  path  for  Soar  and  ACT-R
confronted  with  modelling  complex  dynamic  tasks.   Work  at  the  European
Commission’s  Joint  Research  Centre  developing  COSIMO  in  this  way  has  been
motivated by the needs of modelling aviation tasks, among others (Amat, 1995).

Thirdly,  one  may  start  with  a  more  sophisticated  architecture,  which  has  been
developed  explicitly  with  the  intention  of  supporting  cognitive  models  of  the  kind
required.   Greater  potential  in  a  cognitive  architecture could  come through revising
some of the basic assumptions of previous architectures.   Both the HCA, discussed
above,  and the exploratory SimulACRUM framework (Grant,  1996),  do without  the
intricate central executive mechanisms appearing in other architectures, preferring what
could be called contextual modularity over functional modularity (Grant, 1994).

One important factor contributing to simplicity, clarity and ease of use of a cognitive
architecture is the separation of its theoretical content from its implementation detail.
Often, implementation of an architecture leads to over-specification, in the sense that
more mechanism is implemented than is claimed to have theoretical validity (Cooper et
al., 1995).  Users of the architecture should be protected from this excessive detail, and
allowed to focus on the cognitive aspects of the model.  In COSIMO, for instance, there
are  simulation  parameters  that  are  not  discussed  under  the  section  for  theoretical
foundations.  A promising development approach for COSIMO or an architecture in a
similar position would be to target the clarification of this separation, making explicit
just what is the extent of the domain-independent theory.  Any such careful examination
is likely to lead to general improvement of an architecture, and resulting clarity and
simplicity would also help towards creating a modelling framework.

To assist cognitive modelling effectively, all architectures need to be worked through
on examples of cognitive models of the general type that is needed.  However, focusing
on one example, such as do COSIMO and Amalberti and Deblon (1992), may not give
the required generalisability for the architecture to be easily usable for other models.
More  specifically,  for  modelling  errors,  it  would  be  particularly  useful  to  have  a
generally available set of relevant human errors described in detail, without theoretical
presuppositions.   These  could  guide  both  the  development  of  the  architectures
themselves  at  a  theoretical  level,  and  the  development  of  models  from  those
architectures, to test out their usability in practical modelling, and to test the quality of
derived models.

VI. CONCLUSIONS

Cognitive modelling and architecture may be used at a conceptual level for reasoning
and speculating about the cognitive mechanisms responsible for human errors.  But the
main thrust of this paper is concerned with the use of architecture to support simulation
modelling of errors in complex tasks, and for this, an architecture needs considerable
sophistication.  An approach to preliminary evaluation of cognitive architecture for this
purpose has been introduced, and this approach can be followed to varying depths and
levels  of detail.   Problems and opportunities  have been identified which could lead
towards methods of fuller evaluation of architectures’ potential in this respect.
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Architectures such as ACT-R do not directly attempt to model the kinds of error
focused on in this paper, but perhaps could provide such models with development of
the  architecture.   Architectures  such  as  Reason’s  Fallible  Machine,  similar  to  the
architecture underlying COSIMO, are designed for modelling errors, but the Fallible
Machine’s need of full specification is not ideally complemented by COSIMO.  Novel,
different  architectures  such as  the  Holon Cognitive  Architecture  may yet  offer  rich,
parsimonious models, but this remains unproven.  

Cognitive modellers interested in human error and safety need to maintain a critical
awareness of the cognitive architecture that they propose to use.  Those who wish to
benefit  from cognitive models can contribute to their  development  by providing for
study real examples of error in complex dynamic tasks.  Cognitive architectures should
be devised taking real error examples fully into account,  and tested with reference to
that  kind  of  example,  ensuring  that  the  mechanisms  of  the  cognitive  architecture
adequately correspond to the kinds of error naturally observed.

Modellers will then be able to look forward to the easier construction of cognitive
simulations in the domains of their choice, and this can be expected to contribute finally
to  better  overall  safety  and  reliability  of  complex  dynamic  systems  which  involve
complex tasks performed by humans.
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SUMMARY

Modelling human performance in complex tasks is progressing from lower-level architectures to now
using cognitive architectures  like ACT-R and Soar.  The important  differences between architectures
include their capabilities for modelling human error.  One can evaluate an architecture for modelling
error by comparing observed types of error in real complex tasks with the potential mechanisms available
in the architecture with which to model error.  Anderson’s ACT-R; Reason’s fallible machine (underlying
the COSIMO model); and Michael J. Young’s Holon Cognitive Architecture (HCA) are here compared.
Conclusions are in terms of the outstanding challenges for development of architecture towards being
useful for models of human error in commercially important tasks, and towards greater ease for this
evaluation.
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